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Flying fishes are extraordinary aquatic vertebrates capable of gliding great

distances over water by exploiting their enlarged pectoral fins and asymme-

trical caudal fin. Some 50 species of extant flying fishes are classified in the

Exocoetidae (Neopterygii: Teleostei), which have a fossil record no older

than the Eocene. The Thoracopteridae is the only pre-Cenozoic group of

non-teleosts that shows an array of features associated with the capability

of over-water gliding. Until recently, however, the fossil record of the

Thoracopteridae has been limited to the Upper Triassic of Austria and

Italy. Here, we report the discovery of exceptionally well-preserved fossils

of a new thoracopterid flying fish from the Middle Triassic of China,

which represents the earliest evidence of an over-water gliding strategy in

vertebrates. The results of a phylogenetic analysis resolve the Thoracopteri-

dae as a stem-group of the Neopterygii that is more crown-ward than the

Peltopleuriformes, yet more basal than the Luganoiiformes. As the first

record of the Thoracopteride in Asia, this new discovery extends the geo-

graphical distribution of this group from the western to eastern rim of the

Palaeotethys Ocean, providing new evidence to support the Triassic biologi-

cal exchanges between Europe and southern China. Additionally, the

Middle Triassic date of the new thoracopterid supports the hypothesis that

the re-establishment of marine ecosystems after end-Permian mass extinction

is more rapid than previously thought.
1. Introduction
The end-Permian mass extinction devastated the marine ecosystem (causing

90–95% of marine species to become extinct), with restructuring of commu-

nities in the Triassic [1]. By the Middle Triassic, several groups of aquatic

reptiles occupied the top trophic levels of the marine ecosystems [2], and the

Neopterygii (‘new fins’), the largest group of Actinopterygii (ray-finned

fishes), exhibited a high morphological diversity, probably adapted for different

ecological niches [3,4]. The Thoracopteridae [5–10], a primitive neopterygian

group that was confined to the Triassic marine ecosystem of the Palaeotethys

Ocean, first evolved the remarkable strategy of over-water gliding. The

modern analogue of the Thoracopteridae is represented by the Exocoetidae, tro-

pical to subtropical teleosts that possess a fossil record no older than the Eocene

[11–13]. Exocoetids show successful gliding capabilities over water; they can

glide over total distances of as much as 400 m in 30 s by a successive sequence

of taxiing and flight, with a maximum flight speed of approximately

10–20 m s21 [12–14]. Based on behavioural studies and molecular-based phy-

logeny of the Exocoetidae, Kutschera [15,16] suggested that the evolution of the

exocoetid flying fishes was driven by attacks of aquatic predators such as dol-

phins. Studies of extant exocoetid flying fishes [12–16] potentially provide a
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good comparative basis for understanding the Thoracopteri-

dae. Thoracopterid flying fishes were previously only

represented by material from the Upper Triassic of Austria

and Italy [5–10]. This limited fossil evidence hampers under-

standing of the temporal and spatial distribution of the

Thoracopteridae. Furthermore, incomplete preservation of

previous material prevents detailed description of several

phylogenetically significant characters of this group, and, as

a result, the phylogenetic relationships of the Thoracopteri-

dae are unclear [7–9]. Here, we report a new thoracopterid

based on the fossils found from the Zhuganpo Member of

the Falang Formation, exposed in Xingyi, Guizhou Province,

southwest China. These fossils are exceptionally well pre-

served in grey mudstone, permitting a description of much

of thoracopterid morphology. For the first time in the Thora-

copteridae, we can observe the ventral braincase (figure 1a).

These new morphological data are incorporated into a cladis-

tics analysis to determine the relationships of the

Thoracopteridae within the Neopterygii. Also from the

same fossil locality and horizon are abundant marine reptiles,

including pachypleurosaurs, ichthyosaurs, nothosaurs, tha-

lattosaurs and placodonts [17], and several other fishes [18],

documenting an early fauna of marine reptiles and neopter-

ygian fishes in the Triassic Yangtze Sea (a part of the

eastern Palaeotethys Ocean) in southern China.
2. Systematic palaeontology
Actinopterygii [19]

Neopterygii [20]

Thoracopteridae [21]

Potanichthys xingyiensis gen. et sp. nov.

(a) Etymology
The generic name is from potanos (Greek), meaning ‘winged,

flying’, and ichthys (Greek), meaning ‘fish’. The species

epithet refers to Xingyi city, near the fossil site.

(b) Holotype
A nearly complete skeleton in the collection of the Zhejiang

Museum of Natural History, Hangzhou, China (ZMNH

M1692).

(c) Paratype
A nearly complete skeleton in the collection of the Institute of

Vertebrate Paleontology and Paleoanthropology, Chinese

Academy of Sciences (IVPP V17744).

(d) Type locality and horizon
Xiemi, Wusha, Xingyi, Guizhou Province, China; lower part

of the Zhuganpo Member, Falang Formation, Middle Triassic

(Ladinian) [17,18,22].

(e) Diagnosis
Distinguished from other members of the family by posses-

sion of enlarged skull roughly one-third of standard length,

two supraorbitals, two suborbital bones and reduction in

body scales to only four vertical rows in caudal region.
3. Morphological observation
The holotype (figure 1a) and the paratype (figure 1b) rep-

resent a new thoracopterid flying fish that has a total length

of 153 mm. The new fish displays aerodynamic characteristics

in having a ‘four-winged’ body plan: a pair of greatly

enlarged pectoral fins as ‘primary wings’ and a pair of

pelvic fins as ‘auxiliary wings’. The caudal fin is highly asym-

metrical and deeply forked, with the ventral lobe noticeably

stronger than the dorsal lobe. Swift movement of such a

caudal fin could generate the power to launch the fish for

over-water gliding. The general morphology of Potanichthys
is restored in figure 2.
(a) Skull and mandible
The skull is proportionally large (approx. one-third of stan-

dard length), with a flat and laterally expanded roof formed

by paired trapezoidal frontals and enlarged dermopterotics.

The median rostral is broad and subcircular, contacting the

nasals laterally and the frontals posteriorly. As in other thor-

acopterids, the anterior border of the orbit is formed by the

deep, enlarged antorbital, without contribution from the

nasal. The premaxillae are fused into a single element, a

derived feature shared with the Italian Thoracopterus species

[10], but different from the paired condition in the type

species of Thoracopterus [7] and most other actinopterygians.

The fused premaxillae bear a row of 10 conical teeth.

Two supraorbital bones are present between the nasal

and dermosphenotic, including an elongated anterior and a

subcircular posterior bone. In comparison, the type species

of Thoracopterus possesses a single, elongated supraorbital

bone, whereas Gigantopterus has three narrow supraorbi-

tal bones [7]. The condition is unknown for the two species

of Thoracopterus from Italy [10]. The infraorbital bones include

a rod-like lachrymal and a slightly wider jugal. In addition,

two large suborbital bones (a trapezoidal upper bone and a

triangular lower one) are present in the cheek region.

The maxilla is anteriorly elongated for its orbital portion

and posteriorly expanded for the cheek portion, bearing

about 20 conical teeth along the oral margin. The opercular

series includes a deep preopercle, a large and tall opercle,

and a much smaller subopercle. The preopercle has a

narrow vertical bar, and a slender anterior maxillary process

that ventrally contacts the expanded cheek portion of the

maxilla. Ventral to the subopercle, two branchiostegal rays

are exposed on the right aspect of the paratype, although

the total number is unknown owing to preservation.

The azygous parasphenoid is elongate and covered with

densely arranged, conical teeth along the palatal margin of

the bone. The basioccipital, which anteriorly contacts the

parasphenoid, is slightly longer than wide, with a pair of

foramina for the occipital artery penetrating the ventral sur-

face. The paired palatoquadrates are triangular and large,

and are covered with dense, blunt teeth. Dorsally, the hyo-

mandibula has a thickened head for articulation with the

neurocranium, and postventrally possesses a strong process

for articulation with the opercle. Four pairs of ceratobran-

chials are ossified as slender and rod-like bones. The

hypohyal is a small, subcircular bone, with a foramen for

the hyoidean artery.

No distinct sutures between the dentary, angular

and other elements of the lower jaw can be discerned.
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Figure 1. Potanichthys xingyiensis gen. et sp. nov. (a) Holotype, ZMNH M1692; (b) paratype, IVPP V17744. af, anal fin; ao, antorbital; boc, basioccipital; br, branchiostegal ray; cb,
ceratobranchials; cl, cleithrum; df, dorsal fin; dls, dense lepidotrichial segments; dpt, dermopterotic; dsp, dermosphenotic; fr, frontal; hh, hypohyal; hym, hyomandibular; ju, jugal;
lac, lachrymal; llcf, lower lobe of caudal fin; md, mandible; mx, maxilla; na, nasal; op, opercle; pfr, pectoral fin rays; pmx, premaxilla; pop, preopercle; pq, palatoquadrate; psp,
parasphenoid; pvf, pelvic fin; pvg, pelvic girdle; ro, rostral; sc, scales; scl, supracleithrum; sop, subopercle; spo, supraorbital; suo, suborbital; ulcf, upper lobe of caudal fin.
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As in other members of this family, these elements proba-

bly have firmly fused into a strong mandible. The

mandible is slightly deeper posteriorly than anteriorly,
and laterally ornamented by small tubercles. Sixteen conical

teeth are present along the oral margin of the mandible in

the holotype.

http://rspb.royalsocietypublishing.org/
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(b) Postcranium
A small supracleithrum and a large, curved cleithrum can be

identified in the pectoral girdle of the paratype, and a single

deep pelvic plate in the pelvic girdle of the holotype. The axial

skeleton shows no ossification of centra and ribs, but includes

a series of dorsal and ventral arcual elements in the trunk, and

median supraneurals in the abdominal region. The posteroven-

tral arcual elements at the base of the caudal fin are enlarged,

providing a strong support for the lower caudal lobe.

The pectoral fins are greatly enlarged, representing

approximately 42.5 per cent of the total body length. Each

pectoral fin consists of 11 principal fin rays that have a sturdy

basal shaft, but segmented distal extensions. All but the first

fin ray are distally branched, providing a large surface support

of the pectoral fin. In addition, dense lepidotrichial segments

(the ‘sensenförmig’ of Abel [5] or ‘voile falciforme’ of

Lehman [8]) are present between the innermost principal fin

ray and the body wall, further enlarging the surface area for

gliding. This feature is unique to the Thoracopteridae. The

pelvic fins extend to approximately 20 per cent of the total

body length, and show the biplane gliding design of the

body observed in other thoracopterids [7–9].

The triangular dorsal fin is positioned far posteriorly, close

to the caudal peduncle. It has nine to 10 fin rays, preceded by a

single basal fulcrum and four ridge scales. The endoskeletal

support of the dorsal fin includes radials of roughly the same

number to that of the dorsal fin rays, a derived condition of

the Neopterygii, with the exception of Australosomus and

other basal neopterygians. The greatly reduced anal fin has

three short fin rays, preceded by a pair of enlarged scales.

The endoskeletal support of the anal fin is lost, as in other

members of this family. The deeply forked, asymmetrical

caudal fin has a total of 34 fin rays, evenly distributed between

the dorsal and ventral lobes. There are two basal fulcra in the

lower lobe and one in the upper lobe. Fringing fulcra are

absent in all fins, as in other thoracopterids [7–9].

Differing from the type genus Thoracopterus, which has a

fully scale-covered body, Potanichthys shows great reduction

in body scales, with only four vertical rows of rhomboic

scales at the base of the caudal fin. Gigantopterus shows further

reduction in body scales, having only a single vertical row of

scales in the caudal region. By contrast, the two thoracopterids

from Italy [10], although assigned to Thoracopterus, are
characterized by the total loss of body scales. The scale

reduction in thoracopterid evolution could provide the advan-

tage of manoeuvrability and energy efficiency for gliding.
4. Discussion
(a) Phylogenetic analysis
The phylogenetic affinity of the Thoracopteridae within the

Neopterygii is controversial. This family has been placed in

the Luganoiiformes or Perleidiformes [7–9]. Here, we present

a phylogenetic analysis to assess the relationships of this

group, based on a dataset composed of 83 characters coded

across all thoracopterids, two living flying fishes and

11 other neopterygians. The Early Triassic Australosomus,

which is often reconstructed as a basal neopterygian

[21,23–26], was selected as the out-group. The characters

were adopted from previous studies of basal actinopterygians

[21,23–31]. Parsimony analysis was conducted using the

branch-and-bound algorithm of PAUP v. 4.0b10 [32], with

all characters equally weighted and treated as unordered.

The analysis resulted in three most parsimonious trees, the

strict consensus of which is shown in figure 3.

The results of our phylogenetic analysis are consistent

with Gardiner & Schaeffer [21], placing the orders Perleidi-

formes, Peltopleuriformes and Luganoiiformes as stem

neopterygians. However, our analysis fails to support the

Thoracopteridae as a subgroup of either the Luganoiiformes

(contra [7]) or Perleidiformes (contra [8,9]). Rather, the Thor-

acopteridae are resolved as a stem-group of the Neopterygii

that is more crown-ward than the Peltopleuriformes, but

more basal than the Luganoiiformes. The Thoracopteridae

possess a suite of unambiguous synapomorphies of the

clade Perleidiformes plus more crown-ward neopterygians,

including dorsal and anal fin rays only distally segmented,

dorsal and anal fin rays equal to endoskeletal radials in

number, and nearly vertical suspensorium. The Thoracopter-

idae lie above the Peltopleuriformes, and consist of the

sister-group of the clade Luganoiiformes plus crown-group

Neopterygii; the sister-group relationships between them

are supported by one derived character state (i.e. nasal not

contributing to anterior border of orbit). However, they lack

unambiguous synapomorphies of the Luganoiiformes plus

crown-group Neopterygii, including maxilla free from the

preopercle, possession of prominent coronoid process in the

lower jaw, and hinge position of jaws near or well anterior

to posterior border of orbit.

The Thoracopteridae have evolved an unusual combi-

nation of morphological features associated with gliding.

Like the extant Exocoetidae, the Thoracopteridae have a pair

of laterally expanded frontals, wing-like pectoral fins and an

asymmetrical caudal fin with lower caudal lobe noticeably

larger than upper lobe. They have pelvic fins enlarged as

‘auxiliary wings’, a derived feature shared with ‘biplane-

type’ exocoetids (e.g. Cypselurus), but differing from

‘monoplane-type’ exocoetids (e.g. Exocoetus). It is noteworthy

that most thoracopterids (except Thoracopterus) have reduction

or complete loss of body scales, a feature that is otherwise

independently evolved in few other ray-finned fishes

(e.g. Birgeria), and which is unknown among extant exocoetids.

Furthermore, the Thoracopteridae possess several synapomor-

phies that are unique among the Neopterygii, including dense

lepidotrichial segments present between innermost principal

http://rspb.royalsocietypublishing.org/
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pectoral fin ray and body, loss of parietals and post-temporals,

and a greatly reduced anal fin with loss of endoskeletal support.

The results of our analysis identify Thoracopterus as the

most basal member of the Thoracopteridae. Potanichthys
and other thoracopterids are more derived than Thoracopterus,
sharing increased numbers of supraorbital bones and

reduction in body scales to only a few vertical rows remain-

ing in caudal region. However, the relationships among

Potanichthys, Gigantopterus and the Italian Thoracopterus are

unresolved. The sister-group relationships between two Italian

Thoracopterus species are supported by a complete loss of

body scales. Giving this topology, the Italian thoracopterids

should probably be removed from Thoracopterus.
(b) Over-water gliding strategy
Gliding has evolved many times in animals (see review by

Dudley et al. [33]). Within the vertebrates, it is principally

associated with rainforest tetrapods (e.g. gliding frogs, lizards

and mammals), which use this strategy as an energy-efficient

means of travelling from tree to tree. However, gliding has

evolved only twice among fishes: once in the Triassic
Thoracopteridae, and again in the modern Exocoetidae. In

contrast to tetrapod gliders, the gliding of flying fishes is

energetically very expensive, and for this reason the hypoth-

esis of gliding in flying fishes as part of an energy-saving

strategy for long-distance migration [34] has been rejected

[12]. An alternative hypothesis [12,15,16] that the exocoetid

flying fishes glide to escape from predators (e.g. dolphin, dol-

phinfish, tuna and squid) is supported by the observation

that flying fishes are a dominant food source in the stomach

contents of dolphins [35]. It is unlikely that thoracopterids

used gliding as part of an energy-saving strategy for long-

distance migration (but see [10]); instead, thoracopterid

flying fishes most probably used gliding as an escape strategy

from predators—potentially the co-occurring marine reptiles

that had body plans convergent with modern marine mam-

mals [2]. These marine reptiles occupied the top trophic

levels of Triassic marine ecosystems, feeding on fishes, cepha-

lopods, bivalves and tetrapods [2,17,22]. Other possible

thoracopterid predators include large carnivorous fishes,

such as Birgeria [18], which also occurs in the same units as

Potanichthys and has a total length of up to 3 m (unpublished

material stored in the collection of the Zhejiang Museum of

http://rspb.royalsocietypublishing.org/
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Natural History). Gliding adaptations in thoracopterid flying

fishes represent a remarkable case of convergent evolution of

over-water gliding strategy with extant exocoetids.

Previous studies [12,14,15] have demonstrated that exocoe-

tid flying fishes cannot flap their ‘wings’ to gain lift owing to

functional limitations of pectoral girdles/fins and the associated

muscles (see discussion by Davenport [12]). Instead, exocoetid

flying fishes generate thrust underwater, and launch themselves

out of the water by swift movement of their asymmetrical

caudal fin. Fishes with greatly expanded pectoral fins are com-

monly presumed to be ‘flying fishes’, but these judgements

should be treated with caution. These alleged ‘flying fishes’

with enlarged pectoral fins, but lacking an asymmetrical

caudal fin, such as extant gasteropelicid hatchet fishes and pan-

todontid butterfly fish (Pantodon), are neither powered flyers

nor even true gliders [36,37]. On the other hand, greatly

expanded pectoral fins have been independently evolved for

other strategies (e.g. startling predators), such as marine

‘flying gurnards’, which possess wing-like pectoral fins, but in

fact cannot launch themselves out of water. Thus, wing-like pec-

toral fins are not indicative of gliding. Indeed, the key character

to identify over-water gliding strategy in fishes is an asymmetri-

cal caudal fin, with the ventral lobe noticeably stronger than the

dorsal lobe. Establishing this criterion is especially important

for extinct taxa whose behaviour cannot be directly examined.

For example, the fossil fish Icarealcyon from the Early Triassic

of Madagascar was previously regarded as a ‘flying fish’ [38]

(but see [10]) because of its expanded pectoral fins. However,

this alleged ‘flying fish’ lacks an asymmetrical caudal fin. Fur-

thermore, it has a relatively deep and laterally compressed

body shape, with long dorsal and anal fins, quite different

from extant flying fishes, which have a laterally expanded

skull roof, broadly cylindrical bodies and short dorsal and

anal fins. These differences in body plan between Icarealcyon
and exocoetids cause us to question whether Icarealcyon was

a true glider. In contrast to Icarealcyon, but similar to exocoe-

tids, these features associated with gliding are observed

in both Potanichthys and European thoracopterids. Thus,

Potanichthys and European thoracopterids are interpreted as

over-water gliders.

(c) Ecological implication
The discovery of Potanichthys extends the stratigraphic range

of the Thoracopteridae from the Late Triassic to the Middle

Triassic, and enriches our knowledge of morphological and

taxonomic radiation of non-teleostean neopterygians after

the end-Permian mass extinction. The end-Permian mass

extinction was the most remarkable event to impact ecologi-

cal systems on Earth, and recovery from this extinction

has long been viewed as more prolonged than the recoveries

following other mass extinctions [1]. Based primarily on
studies of terrestrial tetrapods [39], it was suggested that a

low level of taxonomic diversity and ecological complexity

was sustained through to the Early–Middle Triassic. How-

ever, the recovery of marine ecosystems appears to have

been more rapid than that of terrestrial ecosystems, as indi-

cated by recently discovered fossil Lagerstätten from the

Middle Triassic (Anisian) of southwestern China [40]. Vast

outcrops from the Middle Triassic (Anisian–Ladinian) of

China have yielded diverse assemblages of invertebrates,

fishes and marine reptiles [17,18,22,26,40,41], demonstrating

that both the taxonomic diversity and the ecological complex-

ity of top predators and prey in the Middle Triassic were

much higher than those in the Early Triassic. As the earliest

evidence of over-water gliding in vertebrates, the discovery

of Potanichthys significantly adds to our knowledge of the

ecological complexity in the Middle Triassic (Ladinian) of

the Palaeotethys Ocean. This discovery lends support to the

hypothesis that the recovery of marine ecosystems after the

end-Permian event was more rapid than previously thought.

Potanichthys represents the first record of the Thoracopter-

idae in Asia, extending the geographical distribution of this

clade from the western to the eastern rim of the Palaeotethys

Ocean. The Palaeotethys would have provided an east–west

corridor for dispersal, and biological exchanges of aquatic

vertebrates between the East and West Palaeotethys Ocean

have previously been suggested [17,22,41]; Potanichthys pro-

vides new evidence supporting these exchanges in the

Middle Triassic.

In modern ecosystems, flying fishes are commonly lim-

ited to surface waters warmer than 20–238C. In addition,

owing to limitations of muscle function, flying fishes are unli-

kely to be capable of flight at temperatures below 208C [12].

We can reasonably apply similar limitations to the thoracop-

terids, which are inferred to have inhabited the epipelagic

zone in the eastern Palaeotethys Ocean, and therefore imply-

ing surface water temperatures warmer than 208C. A global

hot climate in the Triassic period with no evidence of glacia-

tion at or near either pole has been suggested by previous

palaeoclimate studies [42], and Potanichthys adds new data

supporting a generally hot climate in the Middle Triassic

eastern Palaeotethys Ocean.
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