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The earliest known stem-tetrapod from the Lower
Devonian of China
Jing Lu1, Min Zhu1, John A. Long2, Wenjin Zhao1, Tim J. Senden3, Liantao Jia1 & Tuo Qiao1

Recent discoveries of advanced fish-like stem-tetrapods (for example, Panderichthys and

Tiktaalik) have greatly improved our knowledge of the fin-to-limb transition. However, a

paucity of fossil data from primitive finned tetrapods prevents profound understanding of the

acquisition sequence of tetrapod characters. Here we report a new stem-tetrapod (Tungsenia

paradoxa gen. et sp. nov.) from the Lower Devonian (Pragian, B409 million years ago) of

China, which extends the earliest record of tetrapods by some 10 million years. Sharing many

primitive features with stem-lungfishes, the new taxon further fills in the morphological gap

between tetrapods and lungfishes. The X-ray tomography study of the skull depicts the

plesiomorphic condition of the brain in the tetrapods. The enlargement of the cerebral

hemispheres and the possible presence of the pars tuberalis in this stem-tetrapod indicate

that some important brain modifications related to terrestrial life had occurred at the

beginning of the tetrapod evolution, much earlier than previously thought.
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L
iving tetrapods, such as the frogs, turtles, birds and
mammals, are a subgroup of the tetrapod lineage (tetrapod
total group or tetrapodomorphs). The lineage also includes

finned and limbed tetrapods that are more closely related to living
tetrapods than to living lungfishes1–3. Previously, the undisputed
earliest known stem-tetrapod was Kenichthys, a finned member
from the late Emsian (B399 million years ago (mya)) of Yunnan,
China4,5. By comparison, the oldest fossil record of the lungfish
lineage (dipnomorphs), which forms the immediate sister group
of tetrapodomorphs, can be traced back to the early Lochkovian
(B415 mya)6. Thus, a ghost lineage of at least 16 million years
existed for the tetrapod total group7,8.

Here, we describe a new finned stem-tetrapod, Tungsenia
paradoxa gen. et sp. nov., from the Lower Devonian (Pragian,
B409 mya) of Yunnan, China. The new taxon is B10 million
years older than Kenichthys, and shifts the beginning of stem-
tetrapods back to the Pragian. The parietal shield (holotype,
V10687) and two lower jaws (V10688.1-2) were originally
described as an indeterminate osteolepid9. However, these
specimens were not fully prepared and their phylogenetic
position was open to question. After the discovery of
complementary specimens (V15132.1-22) from the same
locality, we further prepared the original material to unveil the
medial aspect of mandible and hitherto unrecognised aspects of
the neurocranial anatomy.

Results
Geological setting. The new material was recovered from a yel-
low sandstone layer of the Posongchong Formation, near the dam
of the Qingmen Reservoir in the suburb of Zhaotong, north-
eastern Yunnan, South China (Fig. 1). The Posongchong
fauna includes diverse galeaspid agnathans9–12, placoderms13,14,
onychodonts, coelacanths and rhipidistians9,15–18 (Supplementary
Table S1), as well as lingulids and plant remains15,19.

This clastic fish-bearing stratum was originally named as the
‘Cuifengshan Formation’, by comparsion to the Cuifengshan
Group (previously the Cuifengshan Formation) in neighbouring
Qujing district, Yunnan20,21. However, considering the lithology
and faunal composition, as well as the overlying strata, the
Devonian sediments underlying the marine Pojiao Formation in
Zhaotong are more suggestive of the Posongchong Formation in
Wenshan and Guannan, southeastern Yunnan than the
Cuifengshan Group in Qujing. In this regard, the Posongchong
Formation was proposed to represent the lowermost formation of
the Devonian sequence in Zhaotong9,15–19.

Systematic palaeontology

Osteichthyes Huxley, 1880
Sarcopterygii Romer, 1955

Tetrapodomorpha Ahlberg, 1991
Tungsenia gen. nov.

Etymology. Generic name after Liu Tungsen for his pio-
neering contribution to Paleoichthyology in China.
Type species. T. paradoxa sp. nov.
Diagnosis. A small cosmine-covered stem-tetrapod char-
acterized by having a large orbital notch B40% of total
parietal shield length, pineal foramen at the middle level of
orbits, a large pair of fangs on the parasymphysial plate,
short robust olfactory tracts, developed cerebral cavity,
pineal and parapineal recesses not extending anteriorly,
hypophysial fossa far posterior to the optic nerve root and
paired tongue-like recesses at the front of the hypophysial
fossa.

Tungsenia paradoxa sp. nov.

Etymology. Specific name from the Latin paradoxus,
unexpected.
Holotype. IVPP V10687, a parietal shield.
Referred material. Skulls, V15132.1-6; lower jaws,
V10688.1-2, V15132.7-20; cheek bone, V15132.22.
Type locality. Zhaotong, Yunnan Province, China.
Formation and age. Posongchong Formation (Pragian,
Early Devonian).
Diagnosis. As for the generic diagnosis.

Description. The parietal shield is about as wide as it is long
(Fig. 2). In profile, the shield presents a protruding and slightly
upturned snout, suggesting that the mouth was subterminal. The
orbital notch, comprising B40% of total parietal shield length, is
the largest among that of stem-tetrapods. The pineal foramen is
anteriorly positioned, corresponding to the midpoint of the
orbits.

Tungsenia resembles Kenichthys4,5 and basal dipnomorphs (for
example, Youngolepis and Powichthys)22–24 in the medioventrally
directed snout, the infraorbital sensory canal running along the
suture between the premaxillary and neighbouring bones, the
broad orbital tectum and the well-developed basipterygoid
processes (Fig. 2a–g). The elongated, broad parasphenoid and
the paired internasal pits (Fig. 2b,f; Supplementary Fig. S3b)
are shared with primitive sarcopterygian Styloichthys and
basal dipnomorphs8,22,24,25, but differing from the remainder of
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Figure 1 | Location map and lithocolumn of Tungsenia paradoxa gen. et

sp. nov. C, Carboniferous; D1b, Bianqinggou Formation; D1pj, Pojiao

Formation; D1ps, Posongchong Formation; D1s, Suotoushan Formation;

D2qj, Qujing Formation; D2qm, Qingmen Formation; D3, Zaige Formation; J,
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the stem-tetrapods4,26–28(Supplementary Fig. S4). A teardrop-
shaped recess (Fig. 2c,g) is located anterodorsal to the optic
foramen. A similar recess is also found in many finned stem-
tetrapods, such as Gogonasus, Medoevia, Cladarosymblema and
Litoptychus, and has been interpreted as the attachment area for
eye muscle26,28–31.

Other features shared with stem-tetrapods include the opening
for the pituitary vein at the base of the basipterygoid process and
a flat parasymphysial dental plate1,30. A large pair of fangs on
the parasymphysial plate (Fig. 2j,k; Supplementary Fig. S3c,e) is

comparable to that in limbed stem-tetrapods (for example,
Ichthyostega and Acanthostega)32, but absent in finned stem-
tetrapods, suggesting that the parasymphysial fang pair has
evolved in parallel within the tetrapod lineage. A compound
cheek plate, comprising a fused squamosalþ quadratojugal
þ preopercular (Fig. 3a,b), is similar to that in the dipnomorph
Youngolepis and some finned stem-tetrapods (Supplementary
Fig. S5a–c)33–35. As inferred from the anterior overlap area on the
cheek plate, the postorbital bone was proportionally large as in
the rhizodont Barameda36 (Supplementary Fig. S5d).
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Figure 2 | Tungsenia paradoxa gen. et sp. nov. from the Lower Devonian of China. Holotype (IVPP V10687), parietal shield in dorsal (a), ventral

(b, photo; f, line drawing), ventrolateral (c, photo; g, line drawing) and anterior (d, photo; e, line drawing) views, and its rendered translucent showing

endocranial cavity in dorsal view (h). (i) Restoration of external morphology. (j) Right mandible (IVPP V15132.7) in mesial view. (k) Restoration of mandible

in mesial view. add.fo, adductor fossa; art.e, ethmoid articulation; ar.Vo, vomeral area; cav.nc, cavity of nasal capsule; c.hyp, canal for buccohypophysial

duct; c.n.pro, canal for profundus branch of trigeminal nerve; cv, cranial cavity; c.v.pit, canal for pituitary vein; c.II, canal for optic nerve; c.III, canal for

oculomotor nerve; fe.exa, fenestra exonarina anterior; fe.v, fenestra ventralis; fo.gl, glenoid fossa; fo.icor, intercoronoid fossa; fo.pcor, precoronoid fossa;

f.pin, pineal foramen; ioc, infraorbital canal; la.Co, tooth pavement on the lateral portion of coronoids; my?, myodome for eye muscle attachment?; n.ioc,

notch for infraorbital canal; n.Pmx, notch for premaxillary; np, notochordal pit; orb, orbital notch; P, parasphenoid; p-mc, pores for mandibular canal; Prart,

prearticular; pr.bp, basipterygoid process; soc, supraorbital canal; Sym, symphysial area; t.Co, coronoid tusks; t.De, dentary teeth; te.o, orbital tectum;

t.Psym, parasymphysial plate tusk. Scale bar, 1 mm.
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A reconstruction of the skull and endocast based on high-
resolution computed tomography (HRCT) (Figs 2h and 4;
Supplementary Movies 1 and 2) reveals an unexpected
combination of brain features seen in Tungsenia. The short
olfactory tracts and the anteriorly extending brain cavity recall the
conditions in fossil sharks and placoderms37,38 (Supplementary
Fig. S9). Besides, the brain and nerves exhibit a previously
unrecognized mosaic of tetrapod and lungfish traits. The olfactory
tracts of Tungsenia resemble those of basal dipnomorphs (for
example, Porolepis and Glyptolepis)25 in anteriorly diverging with
an angle up to 601. Posteriorly, the space for the hemispheres
(cerebral cavity) is swollen and enlarged, comparable to that in
many other stem-tetrapods27,39. Although the enlargement of the
hemispheres has independently evolved among different major
groups such as cartilaginous fishes and ray-finned fishes, the
evidence from Tungsenia suggests that the enlarged hemispheres
in the tetrapodomorphs appeared during the incipient stage of
their evolution (Fig. 5).

Immediately behind the cerebral cavity, the neuro-epiphysial
recess presents laterally adjacent pineal and parapineal organs
(Fig. 4a,c) as in basal dipnomorphs25,40. However, unlike other
rhipidistians (the lungfish plus tetrapod lineages)41, these
two organs do not extend forward or form canal-like structures.
The mesencephalic portion is more than half of the length of the
cranial cavity, which recalls the condition in placoderms38.
Laterally, both trigeminal and profundus nerves emerge through
foramina in the ethmosphenoid (Fig. 4a,b), like those of

e

b juc

p.SQP
od.Ju

od.Po

od.Po

pl.Sq

pl.Sq

pl.Qj

pl.Qj

c d

od.Cla

ar.mem
ar.mem

od.Cla

n.pf

a

Figure 3 | Tungsenia paradoxa gen. et sp. nov. Compound cheek bone

(SqþQjþ Pop) (V15132.22) in external view (a, photo; b, line drawing).

Left cleithrum in external view (c, photo; d, line drawing). (e) Tentative

reconstruction based on available materials (in black). ar.mem, area for

attachment of membraneous posterior wall of branchial cavity; juc, jugal

canal; n.pf, notch for peoral fin; od.Cla, overlap area for clavicle; od.Ju,

overlap area for jugal; od.Po, overlap area for postorbital; p.SQP, external pit

on SqþQjþ Pop; pl.Qj, quadratojugal pit-line; pl.Sq, squamosal pit-line.

Scale bar, above, 1 mm; below, 1 cm.

a c

d

b

e

pr.bp

att.bc P

fe.exa c.IIc.III

c.v.pit

c.v.pit

c.a.ci

c.a.ci

c.a.pal

my?

pr.conn

cv

c.sup.oph

c.II

?PT

c.n.pro
c.v.pit

fe.v

fe.exa

fo.hy

c.V2+V3

cv
c.II
c.IV

c.V2+V3

soc

ioc

olf

re.pap

f.pin

c.v.ca

cav.nc

fe.exac.sup.oph

cav.nc

re.pin re.pap

c.v.ca
c.II

tel

mes

c.III

die

f

soc

cav.nc

olfc.sup.oph

soc

np

cv

pr. conn

g

h

c.II

?PT

cv

cv

re.papre.pin

Figure 4 | Digital restorations of Tungsenia paradoxa gen. et sp. nov. (a–c) Digital endocasts of dorsal (a), ventral (b) and left lateral (c) views.

(d,e) Braincase in right lateral (d) and posterior (e) views. Selected transverse CT scan slices through the endocranial cavity, showing the brain cavity

at the level of the olfactory tract (f), the opening for pineal organ (g) and the anterior part of the hypophysial fossa (h) att.bc, attachment for basicranial

muscle; c.a.ci, canal for internal carotid artery; c.a.pal, canal for palatine artery; c.sup.oph, canal for superficial ophthalmic nerve; c.v.ca, canal for

anterior cerebral vein; c.IV, canal for trochlear nerve; c.V2þV3, canal for maxillary and mandibular branch of trigeminal nerve; die, diencephalon;

fo.hy, hypophysial fossa; mes, mesencephalon; olf, olfactory tract; pr.conn, processus connectens; re.pap, recess for parapineal organ; re.pin, recess

for pineal organ; tel, telencephalon; ?PT, paired tongue-like recesses at the front of the hypophysial fossa, possibly housing the pars tuberalis. For other

abbreviations see Fig. 2. Scale bar, 1 mm.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms2170

4 NATURE COMMUNICATIONS | 3:1160 | DOI: 10.1038/ncomms2170 | www.nature.com/naturecommunications

& 2012 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


Youngolepis and Powichthys22,40. The hypophysial fossa
(Fig. 4b,c), as in Youngolepis and Powichthys, is stout and
triangular. However, the fossa is placed in a far more posterior
position relative to the optic nerve root. A pair of tongue-
like recesses at the front of the hypophysial fossa (Fig. 4b,c)
may topologically correspond to the paired neurocranial
structures housing the pars tuberalis (PT) in living urodeles
(Supplementary Fig. S8). Incidentally, a paired tube-like structure
at the front of the hypophysial fossa in the dipnomorph
Glyptolepis was identified as the ‘pars tuberalis’ (PT)25,27.
However, it differs from the condition in Tungsenia and living
urodeles in connecting directly with the brain cavity25, and
additional investigation of the ‘PT’ of Glyptolepis is required. The
distal part of the hypophysial fossa of Tungsenia is connected
with a complex of parallel canals for blood vessels, as in
Youngolepis and Powichthys22,40. The hypophysial canal is
funnel-shaped, extending posteriorly to set its opening on
the parasphenoid far from the optic nerve exit (Fig. 4c;
Supplementary Fig. S8a,b).

Discussion
A phylogenetic analysis of 38 taxa, including 21 stem-tetrapods,
shows that Tungsenia is at the most basal position of the tetrapod
stem lineage (Fig. 6; Supplementary Figs S1 and S2). At least two
unambiguous synapomorphies demonstrate the stem-tetrapod
affinity of Tungsenia: the pituitary vein opening anteroventral
to the basipterygoid process, and the flat parasymphysial plate
of mandible.

The basal phylogenetic position, unique character combination
and earlier occurrence of Tungsenia have wide implications for
the study of the tetrapod ancestry. First, Tungsenia pushes back
the fossil record of tetrapods by some 10 million years into the
Pragian. As a result, the first appearance of the tetrapod total
group has now been drawn far closer to the estimated time of the
lungfish–tetrapod split7.

Second, Tungsenia displays a mixture of endocranial features
previously found either in basal dipnomorphs (for example,
paired internasal pits, broad parasphenoid and exits for
trigeminal and profundus nerves in the parietal shield) or in
tetrapodomorphs (for example, the position of the pituitary vein
opening). It further fills in the morphological gap between
tetrapods and lungfishes, and unveils the evolutionary pattern of
character changes during the initial diversification of stem-
tetrapods. Different from the mosaic cranial features, the
mandible of Tungsenia displays undisputed stem-tetrapod
features, suggesting that, at the early stage of the tetrapod
evolution, changes in mandible were faster than changes in
endocranium.

Last, the HRCT study of Tungsenia provides unique insights
into the incipient stage of tetrapod brain evolution. For a long
time, our knowledge of the brain evolution in stem-tetrapods was
limited owing to a small selection of well-studied taxa27,38,39,42.
Thus, the investigation of the brain in Tungsenia, the basalmost
stem-tetrapod, is crucial for revealing the acquisition sequence of
tetrapod brain features. The digital endocast of Tungsenia shows
many plesiomorphies shared with stem-lungfishes and non-
sarcopterygian taxa, such as placoderms and early sharks. Such
arrangement indicates that the accelerated brain modifications
(for example, developed olfactory bulbs, longitudinally positioned
pineal and parapineal canals, and shorten mesencephalon) of
stem-tetrapods had happened crownward of Tungsenia. On the
other hand, the inferred enlarged hemispheres of Tungsenia
indicate that the enlargement of the hemispheres had occurred at
the beginning of the tetrapod evolution. In addition, although the
homologous comparisons among the PT of living tetrapods, the
‘PT’ of Glyptolepis and the paired tongue-like recesses of
Tungsenia still need additional investigations to test, the newly
identified recesses in an early stem-tetrapod seem to provide a
potential to recognize that the PT, a structure linked with some
adaptation necessary for terrestrial living modes, had a deeper
origin than previously considered.

Methods
Phylogenetic analysis. A phylogenetic analysis was performed on a matrix of 263
characters scored for 38 taxa (see Supplementary Methods). All characters were
treated as unordered, and weighted equally. The resulting data matrix was sub-
jected to the parsimony analysis in PAUP* (version 4.0b10)43 using a heuristic
search, with Guiyu, Psarolepis and Achoania (basal osteichthyans) specified as the
outgroup.

The analysis generated five most parsimonious trees with 579 steps (Consistency
index¼ 0.5250; Homoplasy index¼ 0.4750; Retention index¼ 0.7255; and
Rescaled consistency index¼ 0.3809). All trees show Tungsenia as the most basal
stem-tetrapod. The strict consensus tree (Supplementary Fig. S1a) highlights the
poor phylogenetic resolution of the ‘Osteolepiformes’.

X-ray micro-tomography. HRCT data were acquired at the Australian National
University in 2007. Spatial resolution was set to 11.9 mm, (1024)3 16-bit voxels,
80 kV and 60 mA. Slice data derived from the scans were then analysed and
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manipulated using Drishti software. The three-dimensional reconstructions were
created in the Mimics (v13.1) software. The images of the reconstructions were
exported from Mimics and VG Studio Max (v2.0), and finalized in Adobe
Photoshop.

Nomenclatural acts. This published work and the nomenclatural acts it contains
have been registered in ZooBank, the proposed online registration system for
the International Code of Zoological Nomenclature (ICZN). The ZooBank
LSIDs (Life Science Identifiers) can be resolved and the associated information
viewed through any standard web browser by appending the LSID to the
prefix ‘http://zoobank.org/’. The LSID for this publication is: urn:lsid:zoobank.
org:act:39677617-77C8-4144-800E-59C595E66DE8; urn:lsid:zoobank.org:pub:
F80BD663-B04C-46E9-A245-1DCF0FB8383B.
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